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Abstract. We discuss the Jaynes-Cummings interactions of a two-level atom
in a two-dimensional perfect cavity. Quantum superpositions in our cross-cavity
configuration produce interference phenomena, which manifest as collapses and
revivals in unforeseen cases by the Jaynes-Cummings Model. We also compute
numerically the Mandel parameter and the second-order two-time correlation
function and verify the existence of interference-improved sub-Poissonian light
and photon antibunching.
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1 Introduction

The Jaynes-Cummings Model (JCM) is one of the most important pillars of modern
quantum optics, especially of the cavity quantum electrodynamics. The JCM describes
the interactions between an atom and the quantized field of a perfect one-dimensional
cavity [6, 2]. The study of the JCM interactions allowed the theoretical prediction of the
so-called collapses and revivals that together with its experimental corroboration were
a proof of the quantum nature of the light [4, 8]. Different aspects of the collapses and
revivals have been discussed over the past decades; however, they are still interpreted
as the result of interference between the interaction of the atom and each one of the
occupation states of the cavity field.

2 Mathematical Model

Our model describes the interaction of a two-level atom with the cavity field of two
perfect cavities oriented along x and y. The Hamiltonian of our system, under dipole
and rotating wave approximation, is H = Hy + Hjp.
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The free and the interaction components are given, respectively, by:

HO:%hwoaz+hw(aTa+bTb), )
Hip = HAy (am, + a*a_] +hA, (ba+ + b*o_) . )

In Equations (1)-(2), we denote the atomic transition frequency by wg and assume
that both cavities have the same frequency w; in addition, A and Ay are the coupling
constants along x and y that we will take as real quantities. The field operators a and
b describe the field in our configuration, they satisfy the standard commutation rules
of two independent quantum oscillators. On the other hand, the lowering o_ = |g) (e|
and raising o, = |e) <g| operators govern the transitions between the excited |e) and the
ground | g) states, and they satisfy the commutation rule o, = [04,0_].

The cross-cavity configuration provides the possibility of adjusting its coupling
constants by changing geometrical parameters such as the geometrical orientation of the
atomic dipole or the volume of each arm.

In the light of that, we define an effective coupling constant Aeg = /A2 + /li, and the

coupling parameter by 6 = 2arctan (A ylA x). The coupling constants can be conveniently
written as Ay = Adegcos (0/2) and Ay = Aegsin (0/2). The coupling parameter is not only
an important parameter that dictates how strongly the atomic dipole couples to each
arm of the cross cavity, but also it allows defining the new field operators through
A =cos(@/2)a+sin(0/2)b and B = —sin(8/2)a + cos(0/2)b. The new field operators
satisfy the algebra of two independent harmonic oscillators and the total number operator
ata+b'b= AT A+ B'B is preserved.

3 Quantum Superpositions in the Cross-Cavity

By rewriting the Hamiltonian in terms of A and B emerges a mathematical structure
similar to the Jaynes-Cummings Hamiltonian, which allows us to describe the dynamics
of the cross-cavity through the state:

[ @)) =3 [pun,e (D) M,N)) +pun,g (1)|8)IM+1,N))]. 3)
MN

The analytical expression of the complex amplitudes ¢prw,e (£) and P, g (7) will be
published elsewhere. A more interesting aspect of the state 3 is that it is given in terms
of the two-quasi-mode Fock states (Denoted by double angle), they can be conveniently
discussed in terms of the angular momentum formalism.

For that purpose, let us introduce the Schwinger rotation operator Sy (0) = e
and the angular momentum operator Ly, = —i (aJr b-b' a) /2. By recognizing the equality
[0,0) = 10,0)), the two-quasi-mode Fock states are obtained by a simple rotation
| M, NY) = Sy (8) IM, N). Furthermore, the coeflicients are obtained straightforwardly by:

—ifL,

|j,m))=8,(©
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Fig. 1. Numerical computation of the Mandel parameter in the Jaynes-Cummings Model Qjcm
and in the horizontal Q, and vertical Qj, arm of the cross-cavity. The initial state of the system is
|a, 0, e), with Icrl2 =10, and the coupling parameter is 6 = /4. Notice that while the JCM predicts
Qrcm ~ —1/4]af? in the regions between collapse and revival, the value of the Mandel parameter
Qg is considerably lower, i.e., it is considerabily more sub-Poissonian.

In Eq. 4 we identify the angular momentum states | j,m), with quantum numbers
j=(M+N)/2 and m = (M- N)/2. Moreover, the coefficients of the expansion are
the elements of the well known Wigner d-matrix dr]n i ©) = (j,m | Sy ©)]j,m) [9].
According to Eq. 4, the transformed angular momentum can be interpreted as the
superposition of angular momenta over all possible values of m, and a constant value of j.

The transformation that we introduced to define new field operators in the
cross-cavity also can be found in the quantum mechanical theory of a lossless Beam
Splitter (BS). The field at the output ports of the BS are related to the field at the input
ports through a Schwinger transformation, and the photon statistics for notable inputs is
well-known [1]. From the wave function, some important quantities can be analytically
evaluated such as the atomic inversion and the average number of photons. Our previous
research shows that collapses and revivals may occur in unforeseen cases by the JCM [5].

4 Sub-Poissonian Light and Photon Antibunching
To discuss the photon statistics of the field in the cross cavity, we compute numerically
the Mandel parameter and the second-order normalized correlation function. These

quantities are given by:
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Fig. 2. Numerical computation of the derivative of the second-order correlation go(t,7) as a
function of 7 in the Jaynes-Cummings Model and in the horizontal Q, and vertical Qj, arm of the
cross-cavity. The initial state of the system is |a,0, e), with |@|® = 1, and the coupling parameter
is 8 = /8. Notice that for this configuration, the antibunching properties of the JCM and the
horizontal arm of the cross-cavity looks quite similar; on the other hand, there is a transference
of photons towards the vertical arm with antibunching exhibiting an oscillatory behavior.

00 (o' (o' ) O(t)O(t)>—<O*(t)O(t)>2’

(ot (o) 5)
(OOt (t+1)0(t+1) O (D)
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where O = a, b. The numerical solutions were obtained withe the aid of the Python
QuTiP Toolbox [7]. Let us recall that light whose photon number fluctuations are
smaller than those of the Poisson distribution it is said sub-Poissonian and that a good
measure of those fluctuations is the Q-parameter.

In figure 1, we show an striking numerical result of Mandel parameter in the cross
cavity. Whereas the JCM predicts a value Qyjcp ~ —1/47 between collapse and revival
(n indicates the average of the photon distribution), the cross-cavity produces Mandel
parameters along x and y considerably more negative; however, it seems that there is no
a quasi-steady behavior in the short-term regime.
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Another interesting statistical feature of the light is the degree of second-order
coherence, which plays a central role in the definition of photon-antibunching. A widely
accepted definition of antibunching occurs when the derivative of the normalized
function gg) (t,t+7) as a function of the delay time 7 at T = 0 is positive [3]. Our
numerical simulation focuses on weak field |@|® = 1, and the results are presented

in the figure 2.

5 Conclusions

The cross-cavity configuration that we presented is a tripartite system that allows
inquiring on quantum superposition effects unforeseen in the bipartite JCM.
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